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Abstract. The grain boundaries in ultrafine-grained materials, including nanostructured ones, are in a specific
non-equilibrium state, which is associated with extrinsic grain boundary dislocations trapped during plastic
deformation. This grain boundary state plays a significant role in the stability and evolution of many mechanical
and physical properties of nanocrystalline materials. In the present review, accommodation of different
components of non-equilibrium grain boundary structure resulting in a formation of a more equilibrium
structure and associated with a decrease in the internal stresses is analyzed. These are spreading of lattice
dislocations trapped by grain boundaries, relaxation of disordered dislocation walls, relaxation of ensembles of
sessile and glissile extrinsic grain boundary dislocations. The main advantages and limitations of the models
describing accommodation processes are overviewed. Application of the obtained results to nanomaterials is
discussed.

1. EFFECTS RELATED TO
NON-EQUILIBRIUM GRAIN
BOUNDARIES IN
NANOMATERIALS

The physics of nanocrystals is one of the most impor-
tant and intensively developing branches of
nanotechnology. First outlined by Feynman in 1959 [1],
it developed especially rapidly in the 80s and 90s of the
last century [2-5]. Polycrystals with a grain size of less
than 100 nm in one direction are called nanostructured
or nanocrystalline materials. Interest in them from both
researchers and industries is caused, first of all, by their
unusual mechanical, structural, optical, electrical and
magnetic properties [6]. These properties are mainly re-
lated to the large volume fraction of grain boundaries
and triple junctions as compared to the coarse-grained
counterparts of ultrafine-grained materials.

Since nature has not bothered to create
nanomaterials, various processing methods are used.
The most typical are worth highlighting: compaction of

nanopowders, crystallization from the amorphous state,
inert-gas condensation, severe plastic deformation meth-
ods, etc. A common feature of all nanocrystalline materi-
als obtained by these methods is the non-equilibrium
state of grain boundaries, which is primarily due to the
non-equilibrium nature of the processing routes. Non-
equilibrium grain boundaries are characterized by long-
range elastic stress fields and excess elastic energy
[4,7,8]. Depending on the processing method, nanocrys-
tals can have a different type of non-equilibrium struc-
ture. The presence of porosity [9-12] as well as grain
boundaries with so-called non-optimized rigid-body
translation [13], that is, when one grain is shifted along
the common boundary with respect to the other result-
ing in an increase in the grain boundary energy [14-17],
is characteristic feature of nanomaterials obtained by
the compaction method and crystallization from an amor-
phous state. For severe plastic deformation methods,
the non-equilibrium structure of grain boundaries is due
to extrinsic grain boundary dislocations, which are as-
sociated with the absorption of lattice dislocations by
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the boundaries during deformation [8]. The nature of
mesodefects formed in grain boundaries due to this proc-
ess was analyzed by Rybin and co-workers who showed
that the plastic deformation resulted in the formation of
disclinations at triple junctions and arrays of glissile
dislocations in the boundaries, which determine the proc-
esses of grain subdivision and work hardening during
deformation [18-20]. The stress fields and energies of
junction disclinations were studied in detail by Romanov
and co-authors [21-23]. In addition, in Ref. [8] it was
shown that the disordered distribution of extrinsic dis-
locations also resulted in long-range stresses and ex-
cess energy and should be considered as a component
of the non-equilibrium structure of grain boundaries. It
seems quite natural that the different components of
the non-equilibrium grain boundary structure mentioned
above can coexist in one material.

The properties of nanocrystals are affected by the
grain boundary state, their interaction with lattice de-
fects, as well as their ability to relax upon deformation.
At elevated temperatures, accommodation processes
occur in non-equilibrium grain boundaries, leading to a
formation of a more equilibrium structure associated with
a decrease in the internal stresses and playing a signifi-
cant role in the stability and evolution of both mechani-
cal and physical properties of nanomaterials [2,4]. For
example, the Young’s modulus, as well as the ultimate
strength, increase with an increase in the annealing tem-
perature, which is associated with the relaxation of non-
equilibrium grain boundaries and the transition to a more
equilibrium state [24]. An increased strength and ductil-
ity during tensile testing after low temperature anneal-
ing of nanostructured Ti have been revealed in Ref. [25].
The changes in the mechanical properties have been
associated with a recovery of non-equilibrium grain
boundary structure. Thus, the importance of studying
accommodation processes is primarily due to their in-
fluence on the properties of ultrafine-grained materials.

Tucker and McDowell [26], using atomistic
simulations, investigated the influence of an excess free
volume in the grain boundaries, which was taken as a
measure of the degree of their non-equilibrium state, on
the mechanical behavior of aluminum and copper
bicrystals. In particular, it was revealed that the non-
equilibrium grain boundary state resulted in a change in
the observed deformation mechanism at an applied shear
strain. Namely, for equilibrium grain boundary 11 (113)
in Al, emission of partial dislocations from the grain
boundary at maximal shear strength has been observed,
while for the same boundary but in non-equilibrium state,
the grain boundary migration perpendicular to its plane
has occurred. However, no change in the deformation
mechanism during shearing for the same boundary 11
(113) in Cu has been found.

Hasnaoui et al. [27] introduced the degree of non-
equilibrium state via increasing the disorder in the inter-
faces by giving random displacements to interfacial at-
oms. The authors established that the non-equilibrium
state of grain boundaries and triple junctions signifi-
cantly affected the plastic deformation of a
nanocrystalline Ni sample. At that, the annealed sample
is characterized by a more structural order in the inter-
faces and triple junctions, which results in a reduced
plasticity or equivalently increased strength.

Orlova and co-authors [28] measured the
microhardness and electrical resistivity of ultrafine-
grained commercially pure Al processed by high-pres-
sure torsion followed by annealing. For the first time,
they have demonstrated that the non-equilibrium strain-
distorted grain boundary structure strongly affects elec-
trical resistivity of ultrafine-grained Al. Namely, the re-
sistivity of the material containing non-equilibrium grain
boundaries has been found to be 50% higher as com-
pared to the resistivity of the annealed one with a coarse-
grained structure.

Recently, Nazarov and Murzaev [29,30] have stud-
ied an influence of oscillating tension-compression
stresses on the non-equilibrium [112] tilt grain bounda-
ries in Ni by means of molecular dynamics simulations.
The non-equilibrium state has been created by intro-
ducing disclination dipoles into the grain boundaries.
Application of oscillating stresses was accompanied
with a generation of partial lattice dislocations from the
grain boundaries, which led to a compensation of the
stress fields of disclination dipole and the transition of
grain boundaries to a more equilibrium state.

Thus, there are a number of effects related to the
changes in the properties of nanostructured materials
due to the non-equilibrium structure of grain bounda-
ries and its relaxation during annealing or other external
influences such as cyclic straining established recently
by experimental studies and molecular dynamics
simulations. Therefore, the knowledge of the kinetics of
grain boundary recovery consisting of the accommoda-
tion of extrinsic grain boundary dislocations, is impor-
tant for understanding these effects.

2. ACCOMMODATION PROCESSES IN
NON-EQUILIBRIUM GRAIN
BOUNDARIES

Non-equilibrium ensembles of grain boundary disloca-
tions, formed during low-temperature deformation, are
unstable at increased temperatures and can relax form-
ing equilibrium systems with a lower energy. In the ideal
limiting case, the dislocations trapped by the bounda-
ries are completely assimilated by them so that a new
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equilibrium grain boundary structure is formed, which
differs from the initial one, at least, due to the fact that
the total Burgers vector of the absorbed dislocations in
general differs from zero. In this final equilibrium state,
the long-range elastic stresses associated with the
trapped dislocations are completely screened, and the
boundary satisfies the Frank criterion [31]. Thus, the
extrinsic grain boundary dislocations annihilate or trans-
form into intrinsic grain boundary dislocations. The proc-
esses occurring during the absorption of lattice dislo-
cations trapped by the grain boundaries do not include
a significant migration of the boundaries and are called
accommodation processes within the grain boundaries
or grain boundary recovery.

Generally speaking, when a trapped lattice disloca-
tion splits, sessile dislocations with the Burgers vector
equal to the Burgers vector of intrinsic dislocations, as
well as gliding dislocations are formed at the boundary.
The latter are mobile at any temperature and therefore,
gliding extrinsic grain boundary dislocations formed by
different trapped lattice dislocations interact, annihilate
or form clusters at triple junctions. Thus, these disloca-
tions can leave the region of the core of the absorbed
dislocation rather quickly. However, they are unable to
quit the boundary quickly due to the presence of barri-
ers, triple junctions (see below in Section 2.5) and will
be accumulated in the grain boundary. Sessile extrinsic
grain boundary dislocations disturb the periodic distri-
bution of the intrinsic grain boundary dislocations. This
perturbation at high temperatures can relax by a climb of
intrinsic grain boundary dislocations into the new equi-
librium positions and formation of a new periodic net-
work, while the former extrinsic grain boundary disloca-
tions are its integral part.

The ability of grain boundaries to act as sinks for
lattice dislocations and to recover them has a strong
effect on the mechanical properties of polycrystalline
materials. During high-temperature deformation, a cer-
tain dynamic balance is established between the forma-
tion and recovery processes of extrinsic grain bound-
ary dislocations, which determines the stationary de-
formation rate. This review paper examines the models
describing the mechanisms of accommodation processes
in the non-equilibrium grain boundaries with an empha-
sis on nanomaterials processed by severe plastic defor-
mation methods.

2.1. Experimental studies of grain
boundary accommodation processes

Ishida et al. [32], carrying out in situ electron micro-
scopic observations of annealing of deformed metal foils,
were the first to discover the phenomenon of disloca-
tion spreading: when the foils were heated to a certain

temperature, images of lattice dislocations trapped by
grain boundaries gradually spread and weakened until
their diffraction contrast disappeared completely. Since
the diffraction conditions in the experiments were kept
constant, this indicated physical changes in the struc-
ture of the boundary, i.e., the absorption of dislocations
by the grain boundaries.

In numerous subsequent works, the phenomenon
of spreading was studied in detail in different materials
and under different conditions, and the following key
features were revealed. In pure metals, the kinetics of
the spreading depends on the melting temperature. In
low-melting metals (Al, Mg), the images of extrinsic dis-
locations are widened and disappear within a reason-
able time (about tens of seconds) already at room tem-
perature [33, 34], and in Ni when heated to a temperature
of about 500 K [35]. The spreading of the extrinsic dislo-
cations with a noticeable rate occurs at temperatures of
0.2-0.5T

m
, where T

m
 is the melting point. In alloys, lattice

dislocations trapped by grain boundaries are much more
stable in comparison with pure metals [34,36,37], which
indicates the influence of impurities and alloying atoms
on the kinetics of the process and, consequently, on its
diffusion-controlled nature. The stability of trapped lat-
tice dislocations also strongly depends on the struc-
ture of a grain boundary: in special boundaries, spread-
ing occurs at higher temperatures as compared to arbi-
trary ones; in twin boundaries, trapped lattice disloca-
tions are the most stable [38, 39]. In special and near-
special grain boundaries, the splitting of trapped dislo-
cations into extrinsic grain boundary dislocations is of-
ten observed [40-42], and the latter can be incorporated
into the networks of intrinsic grain boundary disloca-
tions [41,43].

Spreading of trapped lattice dislocations is an indi-
cator of the grain boundary recovery, however, it should
not be identified with it. Experimental studies show that
even after the dislocations in grain boundaries have
disappeared, the boundaries are still in non-equilibrium
state. In this state, the yield stress is higher than in a
well-annealed polycrystal [44]. In a number of experi-
ments [38,39,45], it was observed that the spreading time
in grain boundaries, that have already absorbed dislo-
cations as a result of preliminary deformation and mod-
erate annealing, is noticeably shorter than in grain
boundaries of well-annealed polycrystals. Hence, the
mobility of atoms in non-equilibrium grain boundaries
is higher than in equilibrium ones, that is, the absorp-
tion of lattice dislocations leads to an increase in the
diffusion coefficient. In Refs. [46,47], a correlation be-
tween the onset of intensive grain growth and the re-
laxation of trapped dislocations was found, which sug-
gests that there is an accelerated migration of non-equi-
librium grain boundaries. Detailed studies of grain
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boundary sliding in bicrystals demonstrate that the pres-
ence of intragranular sliding significantly (more than 50
times in comparison with “pure” grain boundary slid-
ing) increases the rate of this process [48-50]. The re-
vealed features of non-equilibrium grain boundaries are
extremely important for understanding the mechanisms
of recrystallization and high-temperature deformation
of polycrystals, but their nature has not yet been fully
elucidated.

Thus, on the basis of experimental data, the process
of grain boundary recovery can be conditionally divided
into two stages. At the first stage, local restructuring of
the grain boundary structure occurs in the region sur-
rounding the trapped lattice dislocations, which is vis-
ible as their spreading. The second stage of relaxation
includes the ordering of the arrays of extrinsic grain
boundary dislocations and the annealing of the excess
density of dislocations of the same sign, i.e., wedge
disclinations and ensembles of tangential extrinsic grain
boundary dislocations.

2.2. Spreading of lattice dislocations
trapped by grain boundaries

Three types of models have been proposed for spread-
ing of lattice dislocations trapped by grain boundaries:
(i) the delocalization model, (ii) the dissociation model,
and (iii) the incorporation model. Below they will be
briefly discussed.

(i) The model of delocalization of trapped grain
boundary dislocations was proposed by Lojkowsky and
Grabsky [51]. The authors considered, for simplicity, a
sessile extrinsic grain boundary dislocation with a Burg-
ers vector  b


= (b,0,0) normal to the grain boundary

plane. This dislocation is described with the help of a
continuous displacement field u(x,t). The derivative of
this function represents the distribution of the Burgers
vector and has a maximum at the center of the disloca-
tion core. The stresses normal to the grain boundary
plane cause the formation of vacancies in the tension
regions, and their migration and sink in the compressed
regions. Such a vacancy migration process leads to
the spreading of the density distribution function
u(x,t)/x. Solving the integro-differential equation for
the displacement field, the authors obtained the follow-
ing expression for the characteristic spreading time of
the dislocation core [51]

3 3

0

exp ,b

spr

b a b a

QkTS kTS
t A A

D GV D GV RT
 

 
 
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   (1)

where the coefficient A = 10. Here k is Boltzmann’s con-
stant, T is the temperature, D

b
 is the grain boundary

diffusion width times grain boundary self-diffusion co-
efficient, Q

b
 is the grain boundary self-diffusion activa-

tion energy, G is the shear modulus, V
a
 is the atomic

volume, and S is the characteristic width of a disloca-
tion core at which its diffraction contrast in an electron
microscope disappears. Note that this width S is ap-
proximately equal to 1-2 extinction distances [51, 52].

The main disadvantage of the presented model is
the fact that u(x,t) does not accurately describe the so-
lution of the integro-differential equation for the dis-
placement field. Moreover, in a certain interval, the de-
rivative u(x,t)/x assumes negative values, which cor-
responds to the physically incorrect conclusion that in
this interval there is a continuous distribution of dislo-
cations with the Burgers vector opposite to that for the
considered extrinsic grain boundary dislocation.

(ii) The most convenient way to accurately solve
the problem of the spreading kinetics in the delocalization
model is to consider this model as a limiting case of the
dissociation model, in which the number of extrinsic grain
boundary dislocations, the dissociation products of the
grain boundary dislocations, tends to infinity, and the
Burgers vector of these extrinsic grain boundary dislo-
cations tends to zero.

The simplest dissociation model was proposed by
Johannesson and Thölen [52]. The model considers the
dissociation of the dislocations trapped by a grain
boundary into two effective dislocations with the Burg-
ers vector b


/2, which, under the action of mutual repul-

sive forces, climb in the grain boundary plane in oppo-
site directions (see Fig. 1a). The consideration of the
kinetics of dissociation of a dislocation in the frames of
diffusion transfer of matter gives the expression for the
characteristic spreading time, which coincides with the
expression (1), but with the coefficient of A = 0.34. Note,
that in the original model of Johannesson and Thölen
[52], the numerical coefficient in formula (1) was 1.5, and
in the denominator, instead of the grain boundary width
, there was a half of the modulus of the Burgers vector
of the dislocation trapped by a grain boundary.

A more general analysis of the spreading of disloca-
tions trapped by a grain boundary in the dissociation
model was undertaken in Ref. [53]. In the cited work, it is
assumed that the dislocation trapped by a grain bound-
ary is splitted into a large number of extrinsic grain
boundary dislocations with small but finite Burgers vec-
tors (see Fig. 1b). In the limit of infinitesimal Burgers
vectors, the expansion of the dissociation products can
be described as the expansion of the finite wall of con-
tinuously distributed dislocations. Calculating the
change in the dislocation wall energy (which is sup-
posed to be equal to the energy of the disclination di-
pole), the difference in chemical potentials and the
number of vacancies produced similar to that in Ref [52],
the authors [53] obtained formula (1) for the spreading
time with the coefficient of A = 0.7. However, it should
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Fig. 1. Comparison of different spreading models of extrinsic grain boundary dislocations: (a) the delocalization
model [23], where the dislocations trapped by a grain boundary splits into two effective dislocations, which are repel
each other and climb along the grain boundary; (b) the dissociation model, where the expanding wall of n extrinsic
grain boundary dislocations is obtained as a result of splitting of the trapped dislocation; (c) the incorporation
model, which takes into account that the boundary has its own dislocation structure, i.e. intrinsic grain boundary
dislocations. In (c), the small and large dislocation symbols denote the intrinsic and extrinsic grain boundary
dislocations, respectively.

be noted that the analogy with the climb of two disloca-
tions is inapplicable in this case, and the calculation of
the chemical potential gradient given in Ref.[53] is in-
correct, since both the vacancy flux and the chemical
potential gradient turn out to be far from constant along
the dislocation wall.

In Refs. [54,55], the kinetics of the spreading of the
extrinsic grain boundary dislocations in the dissocia-
tion model was investigated by numerical solving of the
equations of dislocations motion. Under the action of
the 

xx
 component of the stress field, the dislocations

climb, which results in an expansion of the wall. The
climb velocity of the extrinsic grain boundary disloca-
tion is determined by the gradient of the chemical po-
tential, and the stress acting on the dislocation is calcu-
lated by a simple summing of the stresses induced by all
other dislocations, with the exception of the self-stresses
of any dislocation. Assuming that the contrast of the
extrinsic grain boundary dislocations disappears, when
the effective width is equal to S, the following expres-
sion for the spreading time was obtained:

3

0.036
spr

b a

kTS
t

D GV



 (2)

which differs from formula (1) by a significantly smaller
coefficient A = 0.036 and is valid for an arbitrary amount
of dissociation products of the dislocations trapped by
a grain boundary, including transition to the limit of con-
tinuous delocalization.

Thus, numerical calculations presented above dem-
onstrate that, indeed there is practically no difference
between the kinetics of the spreading of the disloca-
tions trapped by a grain boundary in the dissociation (i)
and delocalization (ii) models, both result in the same
expression for the characteristic spreading time (2).

(iii) The incorporation model of the trapped lattice
dislocations was proposed in Ref. [56]. The main fea-
ture of this model is the fact that it takes into account
that the boundary, before absorption of the trapped lat-
tice dislocations, has its own, intrinsic, dislocation struc-
ture. It should be emphasized that the idea of incorpora-
tion of extrinsic dislocations into the grain boundary
structure was expressed earlier in Refs. [41,43], but it
was extended only to the case of low-angle and near-
special grain boundaries.

The kinetics of the spreading of extrinsic grain
boundary dislocations in the incorporation model is
controlled by the creep of the intrinsic grain boundary
dislocations [56]. In contrast to the dissociation model,
in which dislocations with small Burgers vectors can
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climb over large distances, the climb of any dislocations
in the incorporation model occurs at distances not ex-
ceeding the distance between the intrinsic grain bound-
ary dislocations. It is assumed that in the initial state the
tilt boundary contains a network of intrinsic grain bound-
ary dislocations with the Burgers vector  b


= (b,0,0), and

the extrinsic dislocations with the same Burgers vector
are located at equal distances symmetrically relative to
the intrinsic dislocations (see Fig. 1c). The location of
the extrinsic grain boundary dislocations is assumed to
be periodic insofar as it facilitates the numerical solu-
tion of the equations of motion allows avoiding bound-
ary conditions. If number of extrinsic dislocations is
large, then the obtained results will coincide with the
kinetics of spreading of a single extrinsic dislocation.
As a result of numerical solving of the equations of
dislocations motion, the authors [56] obtained the fol-
lowing expression for the spreading time of the extrinsic
grain boundary dislocations, i.e., the time during which
the effective width of the dislocation becomes equal S:

3

0.03 .
spr

b a

kTS
t

D GV



 (3)

Thus, it turns out that all three models of the spreading
of the dislocations trapped by a grain boundary lead to
practically the same result. The numerical coefficients
in the expressions for the spreading time (2) and (3)
differ only by 20% and more than two orders of magni-
tude smaller than in the original formula of Lojkowsky
and Grabsky [51].

Let us compare the obtained results with the experi-
mental studies of the kinetics of spreading of trapped
lattice dislocations. In Ref. [57], the results of calculat-
ing the spreading time within grain boundaries in Ni at
T = 493 K obtained in different models are compared
with each other and with experimental data [35], accord-
ing to which at this temperature in Ni the spreading time
is 30 s. The first two models lead to values of 4900 s
(Johannesson and Töhlen [52]), 1400 s (Lojkowsky and
Grabsky [51]), which are two orders of magnitude higher
than the experimental value, while the formula (3), which
is valid for all models, leads to value of 15 s, that is in
very good agreement with the experimental result.

Let us also calculate the spreading time for stainless
steel, taking the following values of the parameters
[58,59]: G = 7.74×104 MPa, V

a
 = 1.16×10-29 m3, S = 6×10-8 m,

D
b0
 = 1.5×10-13 m3/s and Q

b
 = 184 kJ/mol. Calculations

using formula (3) for three temperatures lead to the fol-
lowing values of t

spr
: 653 s at T = 633 K, 87 s at T = 673 K,

and 22 s at T = 703 K. The experimental data for these
temperatures are in intervals of 400-1200 s, 50-250 s, and
20-30 s, respectively [58]. Thus, a very good agreement
with the experimental data is again achieved.

Let us now consider the limitations of the models of
the spreading of trapped lattice dislocations considered
above. The first limitation, common to all models, is that
the formulas for spreading time are valid only for single
extrinsic dislocation, that is, at low dislocation densities
in comparison with S-1. If the dislocation densities are
higher than this value, their collective behavior has a
strong influence on the spreading time. At higher dislo-
cation densities, the spreading criterion should be
changed. When the effective width of the dislocation
wall is less than the extinction distance, but already ap-
proaching the distance between the extrinsic grain
boundary dislocations, the stress field experiences the
same screening as the stress of the periodic dislocation
wall consisting of edge dislocations, and the image of
extrinsic dislocation disappears. Thus, in this case, the
spreading time will be determined by the recovery time,
i.e., time of full relaxation of a system of extrinsic grain
boundary dislocations, which will be discussed below.
The numerical values of the extinction distance for met-
als are usually of the order of 100 nm [58], and therefore,
formula (3) is valid up to dislocation densities of about
107 m-1, which is close to the maximum density of the
trapped lattice dislocations during in situ observations
[45]. Consequently, this limitation allows the use of the
obtained expressions for the spreading time to the bulk
of the experimental data. In addition, as was demon-
strated in Ref. [60], in the boundaries close to special
ones, the spreading of the trapped lattice dislocations
occurs according to the incorporation mechanism, and
in general grain boundaries - according to the
delocalization mechanism. In periodic boundaries, which
can be classified as general by their properties, but in
which dislocations with a small but finite Burgers vec-
tor can exist, spreading will occur according to the dis-
sociation mechanism.

2.3. Relaxation of a system of disordered
dislocations

Disordered dislocation arrays can relax by the climb of
dislocations to equilibrium positions with the following
formation of uniform arrays with a period h

0
 equal to the

average distance between dislocations. The kinetics of
this process in the frames of the discrete-dislocation
approach was studied in Ref. [61]. The wall of chaoti-
cally distributed dislocations with the Burgers vector
b


= (b,0,0) was considered. The equation of motion of
dislocations were solved starting from initial coordinates
established using a random number generator for ap-
proximately 30 realizations of the initial coordinates of
the extrinsic grain boundary dislocations. Calculations
showed that the non-equilibrium parameter of the disor-
dered walls, which was taken as the ratio of the disper-
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sion of distances to the average distance between dis-
locations, decreased as

( ) exp 1.18 ,
r

t
t

t
  

 
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 

where the characteristic relaxation time t
r
 is determined

as follows
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Let us compare the relaxation time of disordered dis-
location walls (4) with the spreading time for the lattice
dislocations trapped by grain boundaries (3), assuming
that the density of the latter is 107 m-1. For Ni, at a tem-
perature of T = 493 K using formula (4), one obtains
t
r
  3.5×103 s, and the spreading time is 15 s [35]. For

stainless steel, at a temperature of T = 703 K, one ob-
tains t

r
  3.4×103 s, while the spreading time is 22 s [58].

In both cases, the relaxation time of disordered disloca-
tion arrays is more than two orders of magnitude longer
than the spreading time of the extrinsic grain boundary
dislocations. This confirms that fact, indeed, after the
disappearance of the images of extrinsic dislocations,
the grain boundaries are still in a non-equilibrium state.

2.4. Relaxation of wedge junction
disclination quadrupole

Models for the relaxation of sessile components of
trapped lattice dislocations were proposed in Refs. [62-
64]. The relaxation of a disclination dipole at one bound-
ary was considered in Ref. [62], while the relaxation of a

quadrupole of disclinations formed at opposite grain
boundaries was investigated in Refs. [63,64]. The re-
sults show that the relaxation kinetics in these two cases
differ insignificantly. Both models are based on an as-
sumption on the controlling role of grain boundary dif-
fusion.

Let us consider the finite wall of sessile extrinsic
grain boundary dislocations equidistantly distributed
along boundaries, which is equivalent to a quadrupole
of wedge junction disclinations illustrated in Fig. 2. It is
assumed that both the strength and arms of the
disclination quadrupole do not vary during relaxation.
At elevated temperatures, under the forces of mutual
repulsion, the dislocations begin to climb towards the
junctions. In order to escape into neighboring grain
boundaries, a leading dislocation must undergo a dis-
sociation reaction at triple junctions. In a general case,
if there are no dislocations of opposite sign near the
junction in neighboring boundaries, the grain bound-
ary dislocations at the junction should split into dislo-
cations belonging to these boundaries. At obtuse dihe-
dral angles between the adjacent boundaries, which the
most often the case in real polycrystals, an energeti-
cally favorable splitting reaction is possible, as a result
of which four dislocations 3, 4 and 5, 6 are formed from
the sessile dislocations 1 and 2, respectively, and glide
along the corresponding boundaries. These four dislo-
cations 3, 4, 5, 6 can easily leave the triple junction by
sliding and annihilate somewhere in the middle of the
corresponding boundaries with dislocations of the op-
posite sign sliding from adjacent junctions. If disloca-
tions 4 and 5 do not annihilate, they can reach the neigh-
bouring junction, and an energetically favoured recom-

Fig. 2. A model for the relaxation of wedge junction disclination quadrupole, i.e., a system of discrete sessile extrinsic
grain boundary dislocations. Arrows indicate the direction of motion of dislocations during relaxation.
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bination reaction results in a formation of a glissile dis-
location 7. The latter can further glide along a vertical
grain boundary unless annihilation with a dislocation
of opposite sign occurs and thus can be excluded from
the annealing of this disclination quadrupole. The same
processes occur near the lower junction of the consid-
ered grain boundaries. As a result of the escape of one
dislocation from each of the four triple junctions, the
strength of the quadrupole  decreases. After the loss
of these four head dislocations, the next dislocations
approach the junctions, and the process is repeated.
Hence, the process of the relaxation of the disclination
quadrupole is controlled by the climb of grain boundary
dislocations towards the triple junctions. At that, the
arm of the quadrupole is kept constant and equal to the
length of the boundary.

The kinetics of the relaxation of a disclination
quadrupole were considered in a discrete-dislocation
approach via solving the equations of motion of dislo-
cations. The relative rate of change in the strength of
the disclination quadrupole, d/dt, can be calculated
from the time interval  in which two neighbouring dis-
locations successively approach the junctions. When
dislocations approach the bottom and upper junctions,
they are excluded from a consideration. It turned out
that, after some short transient stage, the relative rate of
decrease in the strength of the disclination quadrupole
was constant and equal to 6.5 and did not depend on
the number of dislocations remaining in the wall. For
this steady-state stage, which is the stage with the long-
est duration, the strength of the quadrupole changes
exponentially as (t) = 

0
exp(-t/t

d
) with the character-

istic relaxation time proportional to the cube of the grain
size:

3

100
,

d

b a

kTd
t

D GV



 (5)

where 
0
 is the initial strength of the disclination

quadrupole. The modeling of the relaxation of the
disclination dipole in the discrete-dislocation approach
leads to the same equation, but with a coefficient of 125
instead of 100 [62]. Note that the relaxation of disclination
dipole was also analyzed in the continuum model: the
coefficients in the equations differ by about 1.5 times
[62].

Detailed analysis of the kinetic of relaxation of
disclination quadrupole shows that the process occurs
in three stages [63, 64]. The first, transient stage is char-
acterized by a high relaxation rate and has a duration
determined by

3

1600
.

t

b a

kTd
t

D GV



 (6)

The second, steady-state stage is characterized by
a constant relaxation rate (5). The third stage is charac-
terized by a sharp decrease in the relaxation rate. It should
be noted that the continuum analysis carried out in Ref.
[62] is valid precisely for the second stage, i.e., when
the distribution of diffusion fluxes along the boundary
acquires a parabolic shape (for details see Ref. [62]). At
this stage, the two approaches to the description of
grain boundary recovery are practically equivalent. Con-
sequently, the applicability of the continuum model is
determined by the ratio of the total recovery time and
duration of the second stage. It is obvious that the
steady-state stage dominates over other recovery stages
in the walls with a large number of dislocations.

The energy of a disclination dipole or quadrupole is
proportional to the square of their strength, and there-
fore, the characteristic time during which the energy of
the dipole or quadrupole decreases by a factor of e is
half the characteristic time for the strength. Direct cal-
culations of the energy of the relaxing quadrupole con-
firm this fact [63,64].

2.5. Relaxation of a system of glissile
extrinsic grain boundary dislocations

The kinetics of accommodation of a system of glissile
(or tangential) extrinsic grain boundary dislocations was
firstly analyzed in Ref. [65]. The authors assumed that
the elementary relaxation mechanism of the system of
glissile grain boundary dislocations is the climb of some
effective sessile dislocation with the Burgers vector b

t

along the neighboring boundary from the triple junc-
tion towards a sink located at the center of this bound-
ary. The driving force of the process is the stress of the
system of gliding dislocations. However, one of the dis-
advantages of this model is its asymmetry. It assumes
the creep of dislocations to the sink along only one
neighboring boundary, while there are no restrictions to
the sink along the other boundary.

A relaxation model symmetric with respect to
neighboring boundaries was proposed in Ref. [62]. Fig.
3 shows a fragment of a hexagonal polycrystal, the hori-
zontal boundary of which contains N glissile extrinsic
grain boundary dislocations. Under the mutual repul-
sion, the dislocations form a pile-up, locked at both ends
at the triple junctions. This pile-up creates compressive
stresses along the Ox axis and tensile stresses along
the Oy axis. These stresses can relax by diffusion trans-
fer of matter from the upper boundary to the lower one.
Thus, the accommodation of glissile grain boundary
dislocations can be described in the frames of the diffu-
sion relaxation model. The equivalent discrete-disloca-
tion description of this process is as follows. The head
dislocation of a pile-up splits into two dislocations,
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which, under the action of pile-up stresses and forces
of mutual repulsion, climb to sinks located at the points
X and Y (see Fig. 3). In this case, the sources of vacan-
cies are dislocations climbing along the lower bound-
ary, and the sinks are dislocations in the upper bound-
ary.

Calculations performed according to a fairly tradi-
tional scheme [66] have shown that the decrease of the
average density of the Burgers vector of tangential grain
boundary dislocations occurs according to exponential
law  (t) = 

0
exp(-t/t), with a characteristic relaxation

time [62]

3
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.

b a

kTd
t

D GV




 (7)

Comparison of this expression with formula (5) suggests
that the relaxation of the disclination component of non-
equilibrium grain boundaries and systems of glissile
extrinsic grain boundary dislocations obey the general
equation and the characteristic relaxation times are prac-
tically the same.

The mechanisms of relaxation of systems of sessile
and glissile extrinsic grain boundary dislocations con-
sidered above relate only to the processes occurring in
one boundary. In the general case, the neighboring grain
boundaries also contain extrinsic grain boundary dislo-
cations, and the relaxation processes in different bounda-
ries should be coordinated in a certain way. Unfortu-
nately, for a time being, no models describing the ac-
commodation processes of the spatial network of grain
boundaries containing excess dislocations have been
constructed. In both the continuous and discrete-dislo-
cation models, such a calculation is a very challenging
task. However, it can be assumed that taking into ac-
count the interaction of dislocations in different bounda-
ries will not result in a qualitatively different kinetics of
grain boundary recovery.

An indirect confirmation of the above said can be a
recently discovered fact when considering the ultrasonic
relaxation of disordered dislocation arrays in a colum-
nar polycrystal containing non-equilibrium grain
boundaries modelled be means of quadrupole of wedge
junction disclinations [67]. It turned out that the pres-
ence of neighboring grains, which surrounds the cen-
tral grain, does not have a significant qualitative effect
on the kinetics of dislocation rearrangements in com-
parison with a single grain considered in Refs. [68-71],
and all changes are of only quantitative character. It is
because the quadrupole of wedge junction disclinations
is a screened system and therefore it can be argued that
all dislocations rearrangements are completely deter-
mined by long-range interactions within the individual
grains.

3. APPLICATION TO
NANOMATERIALS AND
CONCLUDING REMARKS

Grain boundaries in as-prepared nanostructured materi-
als contain extrinsic grain boundary dislocations, which
can be divided into the three types of non-equilibrium
ensembles as said in Section 1 and considered in Sec-
tions 2.3-2.5: disordered systems of extrinsic grain
boundary dislocations, junction disclinations, and tan-
gential extrinsic grain boundary dislocations. The pa-
rameters of these ensembles of defects are determined
by the ratio of the strain rate and the rate of relaxation,
which can occur either by the climb of extrinsic grain
boundary dislocations, or athermally by generating dis-
locations from grain boundaries, or by activating sec-
ondary slip in the grain, which lowers the level of inter-
nal stresses.

The most probable way of relaxation of disordered
arrays of extrinsic grain boundary dislocations is diffu-
sion-controlled rearrangement. Let us consider how this
process can occur at room temperature. For this, it is
sufficient to calculate the characteristic relaxation time
using expression (4). Calculations carried out with the
dislocation density of 

0 
= 108 m-1 for four metals (Al,

Cu, Ni, and Fe) show that the disordered arrays of ex-
trinsic grain boundary dislocations are extremely unsta-
ble at room temperature in Al and their relaxation time is
170 s. This is consistent with the fact that the spreading
of images of extrinsic dislocations in Al occurs at tem-
peratures much lower than room temperature [34,36,37].
These ensembles of dislocations are relatively stable in
Cu: the relaxation time is of about one and a half months.

Fig. 3. A model for the relaxation of a system of glissile
(or tangential) extrinsic grain boundary dislocations.
Arrows indicate the direction of atomic diffusion during
relaxation.
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Researchers who have dealt with nanostructured Cu
have noticed that these samples, which have been lying
for a month, show significant signs of structural
changes. The latter may be associated with the relaxa-
tion of this particular component of the defect structure
of grain boundaries. In Ni, the density of disordered
arrays of extrinsic dislocations, which are stable
during one or two months, is much higher and equal to
4108 m-1, while the relaxation time at the dislocation
density of 108 m-1 is 4.3108 s. In Fe, this relaxation time
is equal to 4.31015s, i.e., disordered arrays of extrinsic
grain boundary dislocations can persist for an almost
unlimited time period.

Comparison of expression (4), on the one hand, and
(6), (7), on the other hand, shows that the relaxation
times of disclination quadrupoles and ensembles of tan-
gential extrinsic grain boundary dislocations at room
temperature, even in nanomaterials, are immeasurably
longer than the relaxation time of disordered arrays of
extrinsic grain boundary dislocations. Therefore, diffu-
sion relaxation these components of non-equilibrium
grain boundary structure are almost completely absent
at room temperature.

At increased temperatures, relaxation processes in
non-equilibrium grain boundaries occur relatively fast.
The results obtained can be compared with the experi-
mental data for submicrocrystalline Cu processed by
severe plastic deformation method [72]. In the cited work,
the authors observed a significant accommodation of
the grain boundary structure and elastic moduli after
annealing the samples during one hour at T = 398 K.
These effects are related to relaxation of both compo-
nents of non-equilibrium grain boundary structure: junc-
tion disclinations and tangential extrinsic grain bound-
ary dislocations. Calculation of the characteristic relaxa-
tion times (5) and (6) using the following parameters for
Cu: D

b0
 = 2.35×10-14 m3/s, Q

b
 = 107.2 kJ / mol  [73],

G = 5×104 MPa, V
a
 = 1.18×10-29 m3, gives circa 60 min.

This is a very good agreement with the experimental
observations.

It is interesting to compare the characteristic relaxa-
tion times for the first and second stages with each other
and with the spreading time (3). From formulas (5) and
(6) one obtains that t

spr
/t

t
 16. Thus, the duration of the

first transient stage is noticeably shorter than the dura-
tion of the second one. Taking into account expressions
(3), (5), and (6), one derives: t

t
/t

spr
 > 1, when d > 230 nm,

t
d
/t

spr
 > 1, when d > 90 nm. Considering that t

d
 > t

t
 , let us

build a hierarchy of characteristic relaxation times de-
pending on the grain size d. Thus, if d < 90 nm,  then
t
t
 < t

s
 < t

spr
;  if 90 < d < 230 nm,  then  t

t
 < t

spr
 < t

d
; if

d > 230 nm, then t
spr

 < t
t
 < t

d
. Thus, in the range of grain

sizes of several tens of nanometers, the spreading time
calculated by formula (3) turns out to be longer than the

relaxation time of the disclination quadrupole. However,
the duration of the relaxation process should always be
no shorter than the spreading time, since, otherwise, it
would turn out that the grain boundaries transformed
into an equilibrium state before the delocalization of the
nuclei of extrinsic grain boundary dislocations occurred.
Therefore, in materials with the indicated grain size,
spreading should take place in a shorter time and ac-
cording to a different law, and, in this case, formula (3)
cannot be used. Under these conditions, it should be
assumed that the spreading time coincides with the re-
laxation time. The latter means that at d  90 nm, the
observed spreading time of lattice dislocations trapped
by the boundaries should depend on the grain size: the
smaller is d, the faster is the spreading of images of
extrinsic dislocations.

Presently, in the scientific literature there are many
experimental data on the study of kinetics of spreading
of the extrinsic grain boundary dislocations. However,
unfortunately, there are no such data concerning the
entire process of grain boundary recovery. In addition,
there were also no studies on the kinetics of recovery
for any property of a polycrystal, the relaxation time of
which could be directly compared with the relaxation
time of the non-equilibrium grain boundary structure.
The influence of relaxation on the yield point during
annealing of a deformed polycrystal is not direct, since
in this case the yield point is affected by dislocation
processes occurring in regions close to the grain
boundaries.

The results presented in this review paper have im-
portant applications for high-temperature plastic defor-
mation of polycrystals and, in particular, for superplastic
deformation. During plastic deformation, the accumula-
tion of extrinsic grain boundary dislocations occurs,
which form the unscreened systems, such as
quadrupoles of junction disclinations. The stress fields
of these disclinations act on dislocations approaching
the grain boundaries in such a way that this leads to
hardening. The complete accommodation of extrinsic
grain boundary dislocations results in a reduction of
these stresses. Thus, the equilibrium between these two
competing processes will lead to a stationary strain rate
that will depend on temperature. Therefore, the charac-
teristic relaxation time of the disclination quadrupole
can be included in the most natural way in the rate equa-
tion for high-temperature deformation.

In summary, in the present paper, accommodation
processes in non-equilibrium grain boundaries in
nanostructured materials processed by severe plastic
deformation methods have been reviewed. The results
predicted by the models are in a good agreement with
experimental data and allow us to describe the evolu-
tion of mechanical properties of nanomaterials associ-
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ated with relaxation of non-equilibrium grain boundary
state. In addition to the accommodation of different com-
ponents of non-equilibrium grain boundary structure,
their application to analysis of recovery of various me-
chanical properties for nanocrystalline and ultrafined-
grained materials is undertaken.
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